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[1] During summer 2004, a comprehensive suite of reactive trace gases (including
halogen radicals and precursors, ozone, reactive N, soluble acids, and hydrocarbons), the
chemical and physical characteristics of size-resolved aerosols, actinic flux, and related
physical conditions were measured at Appledore Island, Maine, as part of the International
Consortium for Atmospheric Research on Transport and Transformation (ICARTT).
Sea-salt mass averaged 4 to 8 times lower than that over the open North Atlantic Ocean.
Production in association with sea salt was the primary source for inorganic Cl and Br.
Acid displacement of sea-salt Cl� primarily by HNO3 sustained high HCl mixing ratios
(often >2000 pptv) during daytime. Median pHs for the larger sea-salt size fractions
(geometric mean diameters, GMDs � 2.9 mm) ranged from 3.1 to 3.4; median pHs for
sub-mm size fractions were � 1.6. Cl* (including HOCl and Cl2) ranged from <20 to
421 pptv Cl but was less than the detection limit (DL) during most sampling intervals.
Periods during which Cl* was consistently detectable corresponded to relatively clean
conditions, multiday transport over water, and relatively low actinic flux. At high HCl
mixing ratios (>1000 pptv), HCl + OH sustained steady state Cl-atom concentrations
in the range of 104 cm�3. When detectable, photolysis of Cl* was generally the dominant
source of atomic Cl; steady state concentrations of Cl atoms were frequently in the range
of 104 to 105 cm�3. At these concentrations, Cl played an important role in the chemical
evolution of polluted coastal air. Br radical chemistry was relatively unimportant.
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1. Introduction

[2] Multiphase chemical transformations involving halo-
genated compounds impact important, interrelated chemical
processes in the marine boundary layer (MBL). The emis-
sion of inorganic Cl� and Br� in association with sea-salt
aerosol produced by wind stress at the ocean surface is the

dominant source of reactive Cl and Br in marine air [Keene
et al., 1999; Sander et al., 2003]. In most regions, rapid
acidification of fresh deliquesced aerosol by HNO3 and
other acids displaces Cl� as HCl [Chameides and Stelson,
1992]; the associated phase partitioning of HCl regulates
aerosol pH and related pH-dependent reactions [Keene et
al., 1998]. In addition, particulate Cl� and Br� in acidic
aerosol solutions are ‘‘activated’’ and subsequently recycled
via autocatalytic pathways involving hypohalous acids [e.g.,
Vogt et al., 1996]:

HOBr þ Br� þ Hþ ! Br2 þ H2O ð1Þ

HOClþ Br� þ Hþ ! BrClþ H2O ð2Þ

HOClþ Cl� þ Hþ ! Cl2 þ H2O ð3Þ

At night, the surface reaction

N2O5 þ Cl� ! ClNO2 þ NO�
3 ð4Þ
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may also be important [Finlayson-Pitts et al., 1989]. Br2,
BrCl, Cl2, and ClNO2 volatilize and photolyze in sunlight to
produce atomic Br and Cl. At high HCl concentrations
(>1 ppbv) in polluted regions, significant atomic Cl is also
produced via [Singh and Kasting, 1988]

HClþ OH ! Clþ H2O: ð5Þ

Following production, Cl and Br atoms catalytically destroy
O3 via:

Xþ O3 ! XOþ O2 ð6Þ

XOþ HO2 ! HOXþ O2 ð7Þ

HOXþ hv ! OHþ X ð8Þ

where (X = Cl and Br). Formation of halogen nitrates via
XO + NO2 and their subsequent scavenging accelerates
conversion of NOx to particulate NO3

� and thereby
contributes to net O3 destruction [Sander et al., 1999;
Pszenny et al., 2004]. Halogen chemistry also impacts O3

indirectly by altering OH/HO2 ratios (XO + HO2 ! HOX +
O2 ! OH + X) [Bloss et al., 2005]. These chemical
pathways together with the self reaction of BrO destroy O3

in near-surface air during Polar sunrise [Martinez et al.,
1999] and have also been hypothesized to explain O3

anomalies in the MBL at lower latitudes over the western
subtropical Pacific Ocean [Nagao et al., 1999], the
temperate Southern Ocean [Galbally et al., 2000], and the
tropical Indian Ocean [Dickerson et al., 1999].
[3] In addition to O3 destruction via reaction 6, atomic Cl

oxidizes hydrocarbons (HCs) primarily via hydrogen ab-
straction to form HCl vapor and products. The enhanced
supply of odd-H radicals from HC oxidation leads to O3

production in the presence of sufficient NOx [Pszenny et al.,
1993]. Evidence from the Texas Air Quality Study indicates
that Cl-radical chemistry may be a significant net source for
O3 in polluted coastal/urban air [e.g., Tanaka et al., 2003].
[4] Halogen-radical chemistry also provides alternate

reaction pathways for S cycling in the MBL. BrO and atomic
Cl efficiently oxidize (CH3)2S [von Glasow et al., 2002; von
Glasow and Crutzen, 2004] to SO2 in the gas phase and
HOCl and HOBr oxidize SIV to SVI in acidic aerosol
solutions [Vogt et al., 1996; Keene et al., 1998]. Both sets
of transformations have potentially important but as yet
poorly quantified influences for the nature and rate of S
cycling in marine air and associated implications for aerosol
production and growth, radiative transfer, and climate.
[5] Despite mounting evidence that halogen-radical

chemistry is important under some tropospheric conditions,
spatial and temporal variabilities in most reactant and
product species, details concerning the nature of some
chemical pathways, and, in polluted regions, the relative
contributions and speciation of reactive halogens from
anthropogenic sources remain poorly characterized. Conse-
quently, the global significance of chemical processes
involving tropospheric halogens is very uncertain. As part
of the Chemistry of Halogens at the Isles of Shoals
(CHAiOS) component of ICARTT, a comprehensive suite
of chemical and physical characteristics of near-surface air

in the northeastern U.S. coastal zone was quantified to
evaluate the nature and importance of halogenated species
in the chemical evolution of polluted continental outflow. In
this report, we interpret the subset of observations relevant
to multiphase processes involving inorganic Cl- and Br-
containing species. Companion papers evaluate chemical
interactions between atomic Cl and hydrocarbons [Pszenny
et al., 2007], iodine-radical chemistry (J. Stutz et al.,
Daytime OIO in the Gulf of Maine, submitted to Geophys-
ical Research Letters, 2007), aerosol nucleation and growth
[Russell et al., 2007] and the multiphase chemical process-
ing of HNO3 [Fischer et al., 2006] and NH3 [Smith et al.,
2007]. A comprehensive modeling investigation of chlorine-
radical chemistry, ozone, and related photochemical pro-
cesses during ICARTT CHAiOS (S. Pechtl and R. von
Glasow, Reactive chlorine in the marine boundary layer in
the outflow of polluted continental air: A model study,
submitted to Geophysical Research Letter, 2007, hereinafter
reffered to as Pechtl and von Gasow, submitted manuscript,
2007) and will be published separately.

2. Methods

2.1. Sampling Site

[6] Between 6 July and 12 August 2004, ambient air was
sampled on Appledore Island in the Isles of Shoals about
10 km off the southern Maine coast, USA (42.90�N,
70.62�W, Figure 1). With the exception of those noted below,
inlets for sampling systems were installed on the top of a
World War II-era surveillance tower about 43 m above the
ocean surface. Aerosol, mist chamber, and filterpack samples
were processed in a laboratory about 150 m from the tower.

2.2. Measurement Techniques

2.2.1. Reactive Trace Gases
[7] HNO3, NH3, HCOOH, CH3COOH, and water-

soluble, volatile inorganic Cl (hereinafter referred to as
HCl) were sampled over 2-hour intervals at nominal flow
rates of 20 L min�1 with tandem mist chambers, each of
which contained 20 ml deionized water [Keene et al., 2004].
All air volumes reported herein were normalized to standard
temperature and pressure (0�C, 1 atm). To minimize artifact
phase changes caused by mixing chemically distinct aerosol
size fractions, air was sampled through a size-fractionating
inlet that inertially removed super-mm aerosols from the
sample stream. Sub-mm aerosol was removed downstream
by an inline 47-mm Teflon filter (Zefluor 2-mm pore
diameter). Samples were analyzed on site by ion chroma-
tography (IC) usually within a few hours after recovery.
Collection efficiencies for all species were greater than
95%, precisions based on paired measurements averaged
±10% to ±25%, and corresponding DLs (estimated follow-
ing Keene et al. [1989] for both mist-chamber and aerosol
samples) ranged from 3 to 11 pptv.
[8] Inorganic Cl gases were sampled in parallel with a

paired set of similar tandem mist chambers samplers and an
identical inlet [Keene et al., 1993; Maben et al., 1995;
Pszenny et al., 2004]. One sampler was configured with an
upstream chamber containing acidic solution [37.5 mM
H2SO4 and 0.042 mM (NH4)2SO4] to sample HCl* (pri-
marily HCl) and a downstream chamber containing alkaline
solution [30.0 mM NaHCO3 and 0.408 mM NaHSO3)] to
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sample Cl* (including Cl2 and HOCl and presumably, ClO,
Cl, ClNO2, ClNO3, and BrCl). The other system contained
tandem chambers both of which contained alkaline solution
to sample total volatile inorganic Cl (Clt). Available evi-
dence [Keene et al., 1993; Maben et al., 1995] indicates that
this sampling technique reliably discriminates volatile inor-
ganic Cl from Cl associated with both particles and organic
gases and that it quantitatively differentiates between HCl
and other forms of volatile inorganic Cl. However, the
speciation of Cl* cannot be determined unequivocally. Mist
solutions were analyzed on site by IC. The average preci-
sion for HCl* was ±20% or ±24 pptv, whichever was the
greater absolute value and that for Cl* and Clt was ±15% or
±10 pptv Cl, whichever was greater. Corresponding DLs
were 48 pptv and 20 pptv Cl, respectively.
[9] Total volatile inorganic Br (Brt) was sampled at

a nominal rate of 85 L min�1 over discrete daytime (about
15-hour) and nighttime (about 9-hour) periods using a filter-
pack technique [Rancher and Kritz, 1980; Li et al., 1994;
Pszenny et al., 2004]. An open-face, three-stage, 47-mm-
diameter, polycarbonate filterpack housing was loaded with a
quartz-fiber (Pallflex 2500 QAT-UP) particle filter followed
by tandem rayon filters (Schleicher and Schuell, 8S) impreg-
nated with a solution of 10% LiOH. On the basis of
independent analysis of the tandem filters, collection effi-
ciencies for the upstream filter averaged 85% for both
analytes. Filterpacks were cleaned, dried, loaded, and
unloaded in a class 100 clean bench. Exposed filters were

transferred to polypropylene tubes, stored in glass jars,
frozen, and transported to Mount Washington Observatory
(MWO) for processing. Samples were spiked with 20 ng In as
an internal neutron flux monitor, folded in half, and sealed in
a polyethylene envelope. Samples subsequently irradiated for
5 min in a nominal neutron flux of 4 � 1012 cm�2 s�1 in the
pneumatic tube facility of the Rhode Island Nuclear Science
Center. Each sample was allowed to decay for approximately
5 min then counted for 900 s (live time) in fixed geometry on
a high-resolution Ge(Li) gamma-ray spectrometer. Observed
net counts under photopeaks at 617 keV (Br-80) and 443 keV
(I-128) were corrected for decay, converted to element
masses, and further corrected for neutron flux variations
(based on the average In masses calculated from net counts
under the 417, 819 and 1097 keV photopeaks of In-116m).
The average precision for Brt was ±19 pptv and the DL was
0.6 pptv.
[10] O3, BrO, NO2, and a suite of other traces gases were

measured in parallel with long-path (LP) and multiaxis
(MAX) differential optical absorption spectrophotometers
(DOAS) [Stutz et al., 2002; Honninger et al., 2004]. The
LP-DOAS telescope and spectrophotometer were installed
in the tower approximately 8 m below the top and the
retroreflector was positioned on nearby White Island, which
yielded a one-way path length of 2.3 km [Pikelnaya et al.,
2007]. The MAX-DOAS was positioned near the base of
the tower.
[11] Hourly samples were collected in 2-liter electropol-

ished stainless steel canisters and analyzed for C2-C10

nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons,
C1-C5 alkyl nitrates and selected sulfur compounds. Canis-
ter samples were pressurized to 35 psi using a single head
metal bellows pump (MB-302MOD, Senior Flexonics,
Sharon, Massachusetts) and were returned to the University
of New Hampshire every 4 days for analysis by gas
chromatography using two electron capture detectors
(ECDs), two flame ionization detectors (FIDs) and one
mass spectrometer (GC-MS) (see Sive et al. [2003, 2005],
Zhou et al. [2005], and Zhou [2006] for additional meth-
odological details). In addition, 60 cc aliquots were collected
from the canister samples using a syringe and analyzed for
methane (CH4) by GC-FID.
2.2.2. Aerosols
[12] Ambient aerosols were sampled over discrete day-

time and nighttime intervals using a modified Graseby-
Anderson Model 235 cascade impactor configured with a
Liu-Pui type inlet, polycarbonate substrates, and quartz-
fiber backup filters (Pallflex 2500 QAT-UP) [e.g., Pszenny
et al., 2004]. At an average sampling rate of 1.0 m3 min�1,
the average 50% aerodynamic cut diameters for the impac-
tion stages were 18, 9.9, 3.9, 2.2, 1.1, and 0.56 mm, which
yielded average GMDs for the size-resolved samples of 25,
13, 6.2, 2.9, 1.5, 0.77, and 0.39 mm. Bulk aerosol was
sampled in parallel on quartz-fiber filters at an average
flow rate of 1.2 m3 min�1. Impactors and bulk-filter
cassettes were cleaned, dried, loaded, and unloaded in a
Class 100 clean bench. Exposed substrates and filters were
halved, transferred to polypropylene tubes, sealed in glass
mason jars, frozen, and transported to MWO for further
processing.
[13] Half sections of each substrate were extracted in

13 mL deionized water using a mini vortexer and sonica-

Figure 1. Location of sampling site.
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tion; half sections of exposed backup and bulk filters were
similarly extracted in 40 mL deionized water. One set of the
substrate extracts and the filter extracts were analyzed by IC
at MWO for total (ionized + undissociated) Cl�, SO4

2�,
CH3SO3

�, HCOO�, CH3COO
�, C2O4

2� NO3
�, NH4

+, Na+,
K+, Mg2+, and Ca2+ [Keene et al., 2004]. Precision for total
HCOO�, CH3COO

�, and Br� averaged >±100% (i.e., most
concentrations were less than DLs); precision for CH3SO3

�

and C2O4
2� averaged ±15% to ±20%; precision for other

analytes averaged about ±10%.
[14] The second set of substrate extracts and paired half

sections of the backup and bulk filters were analyzed for total
particulate Br by NAA. Five-ml aliquots of each substrate
extract were spiked with 20 ng In. Two 47-mm diameter disks
were punched from each backup and bulk filter, spiked with
20 ng In, folded in half, and sealed in a polyethylene
envelope. Samples were subsequently analyzed using the
same procedures as described above for Brt. The average
precision for particulate Br in the substrate samples was
±14% and that for the filters was ±20%. Particulate Br data
reported herein correspond to those generated by NAA.
[15] Internal losses of super-mm aerosols within Sierra-

type cascade impactors average about 25% to 30% [e.g.,
Willeke, 1975; Russell et al., 2003]; other sources of bias for
size-resolved particulate analytes based on the above proce-
dures are generally unimportant [Keene et al., 1990]. Sea-salt
and non-sea-salt (nss) constituents were differentiated using
Na+ as the reference species [Keene et al., 1986]. Deviations
between measured and sea-salt concentrations are reported as
both absolute deficits and enrichment factors (EFs) relative to
sea salt [e.g., Sander et al., 2003]. Because they are not
conservative in bulk samples, data for total particulate and
nss Cl� (and corresponding sea-salt Cl�) and for NO3

�

reported herein correspond to values summed over the size
fractions for individual impactor samples. Data for total
particulate Na+, SO4

2�, and Br correspond to bulk samples.
2.2.3. Meteorological Conditions and Atmospheric
Transport
[16] Local air temperature, relative humidity (RH), and

barometric pressure were measured on White Island at the
Isles of Shoals, NH, meteorological station (IOSN3) oper-
ated by National Oceanic and Atmospheric Administration

(NOAA). Sea surface temperature was measured at two
moored buoys (44013 and 44007) operated by NOAA’s
National Data Buoy Center 87 km S and 80 km NE,
respectively, of the sampling site.
[17] Actinic flux was quantified using a spectroradio-

meter (Bentham/Gigahertz Optics) deployed near the tower
on Appledore Island. Postexperiment calibration revealed
negative bias in these measurements. During midday, the
approximate error was 7.5% under clear-sky conditions and
up to 50% under cloudy conditions. Consequently, the
corresponding calculated values reported herein (including
photolysis rates, OH concentrations, and Cl-atom produc-
tion rates and concentrations, see next section) are consid-
ered lower limits.
[18] Large-scale atmospheric transport was evaluated

using both HYbrid Single-Particle Lagrangian Integrated
Trajectories (HYSPLIT) [Draxler and Rolph, 2005] provided
by the Plymouth State Weather Center and Lagrangian
particle dispersion (FLEXPART) retroplumes [Stohl et al.,
2005]. Samples were classified by source region (Figure 2)
on the basis of visual inspection of the back trajectories and
the corresponding column and footprint residence time
components of the retroplumes [Fischer et al., 2006].

2.3. Calculations

2.3.1. Aerosol pH, OH, and Atomic Cl
[19] Aerosol pH was inferred on the basis of the measured

phase partitioning and associated thermodynamic properties
(Henry’s Law and dissociation constants) of HCl, meteoro-
logical conditions (RH and temperature), and hygroscopic-
ity models of aerosol liquid water content (LWC) [Keene et
al., 2004]. OH concentrations were calculated on the basis
of the measured O3, NO2, actinic flux, and associated
photolysis rates following the parameterization of Ehhalt
and Rohrer [2000]. The sources and sinks for atomic Cl that
were evaluated in this analysis are summarized in Table 1.
While not comprehensive, this suite of reactions includes
the major production and destruction pathways that are
likely to be important in controlling Cl-atom concentrations
in coastal New England during summer. Concentrations of
hydrocarbons measured during the campaign are reported in
companion papers [Pszenny et al., 2007; J. L. Ambrose et
al., Nighttime nitrate radical chemistry at Appledore Island,
ME during ICARTT 2004, submitted to Journal of Geo-
physical Research, 2007]. Photolysis rates (J values) for Cl
gases were calculated from the cited cross sections and the
measured actinic fluxes (Table 1 and Figure 3h). Steady
state Cl-atom concentrations were calculated as follows:

Cl½ 
 ¼ k1* HCl½ 
* OH½ 
 þ Ji* Cl*
� �� �

= k2* O3½ 
 þ Skj* HCj

� �� �

ð9Þ

where all concentrations units are in molecules cm�3; k is
the rate constant corresponding to each indicated reaction
(Table 1); HCl (Figure 3e), Cl* (Figure 3f), and O3 were
measured; and OH was calculated (Figure 3h). HCj refers to
the subset of measured hydrocarbons with which reaction is
an important sink for atomic Cl. These include CH4, ethane
(C2H6), ethene (C2H4), ethyne (C2H2), propane (C3H8),
propene (C3H6), n-butane (n-C4H10), i-butane (i-C4H10),
n-pentane (n-C5H12), i-pentane (i-C5H12), isoprene (C5H8),
a-pinene (a-C10H16), b-pinene (b-C10H16), and camphene

Figure 2. Major source regions for sampled air parcels.
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(C10H16). As described in more detail below, the sensitivity
of Cl-atom production was evaluated over a range of
assumed Cl* speciation on the basis of the corresponding
J values for each (Ji).
2.3.2. Dry-Deposition Fluxes
[20] Dry-deposition fluxes of size-resolved particulate

phase species to the coastal ocean were modeled on the
basis of the measured chemical composition and GMD for
each size fraction, wind velocity, air temperature, and RH
following Hummelshøj et al. [1992]. The laminar sublayer
was assumed to be at 98% RH [Lewis and Schwartz, 2004];
the corresponding GMD for each size fraction in the
sublayer was based on the measured ionic composition
and hygroscopicity models (the same as those used to
estimate aerosol LWC in the overlying air; see above).
Dry-deposition fluxes of HCl to the surface ocean were
calculated on the basis of the measured mixing ratios, wind
speed, air temperature, and surface-ocean-water temperature
following Valigura [1995]. The latter approach assumes that
the surface ocean is substantially undersaturated with
respect to gaseous inorganic Cl and Br species and, thus,
solubility does not limit corresponding dry-deposition
fluxes. We also assume no vertical gradients in particulate
and gas phase species between the reference height for the
approaches (10 m) and the measurement height (43 m).

3. Results and Discussion

3.1. Volatile Inorganic and Particulate Cl and Br
Species in Ambient Air

[21] Concentrations of particulate and vapor phase spe-
cies measured during this campaign (Figure 3 and Table 2)
covered broad dynamic ranges that were similar to those
quantified in the same region during summer 2002 [e.g.,
Keene et al., 2004]. Relative size distributions of Na+ were

similar to those over the open ocean with maximum con-
centrations associate with super-mm size fractions
(Figure 4a). However, the average Na+ concentration during
the campaign (Table 2) was 4.5 times less than the annual
average over the western Atlantic Ocean at Bermuda and
6 to 7 times less than those over the southeastern North
Atlantic at Barbados and the northwestern North Atlantic at
Mace Head Ireland [Galloway et al., 1993]. Relative to the
composition of fresh sea-salt aerosol, most samples were
significantly depleted in Cl� (Figures 3d and 3e). On the
basis of median values, the GMD 1.52- and 0.77-mm size
fractions exhibited the greatest relative depletions
(Figure 4d). The median Cl� EF for all size-resolved
samples was 0.66. Cl� EFs based on size-resolved samples
from less polluted and remote marine regions generally
range from 0.80 to 0.95 [e.g., Graedel and Keene, 1995;
Pszenny et al., 2004].
[22] A reduced major axis (RMA) regression of all

detectable paired HCl* and HCl data (N = 253) yielded a
slope of 1.03, an intercept of �35 pptv and a correlation
coefficient of 0.98; the slope and intercept were statistically
indistinguishable from 1 and 0, respectively. The good
agreement between these paired data reflects the fact that
HCl was the dominant form of volatile inorganic Cl during
the campaign (discussed in more detail below). Because
HCl sampled with the dionized-water mist chambers
exhibited relatively greater precision and a lower DL,
associated interpretations reported herein are based primar-
ily on those data.
[23] HCl mixing ratios ranged from 5 to 5727 pptv and

generally peaked during daytime (Figure 3e). The average
and median HCl mixing ratios (Table 2) fell within the
range of values measured under moderately polluted con-
ditions at Bermuda during spring (12-hour averages from
133 to 883 pptv [Keene and Savoie, 1998]) but were greater

Table 1. Sources and Sinks for Atomic Cl Evaluated in This Analysis

Reaction Rate Constant (298 K, 1 atm) Reference

Sources
HCl + OH ! Cl + H2O 8 � 10�13 molecules cm�3 s�1 DeMore et al. [1997]
Cl2 + hv ! 2 Cl J(Cl2), s

�1 (Figure 3h) DeMore et al. [1997]
HOCl + hv ! Cl + OH J(HOCl), s�1 (Figure 3h) DeMore et al. [1997]
ClNO2 + hv ! Cl + NO2 J(ClNO2), s

�1 (Figure 3h) DeMore et al. [1997]
ClNO3 + hv ! Cl + NO3 J(ClNO3), s

�1a DeMore et al. [1997]
Sinks

Cl + O3 ! ClO + O2 1.2 � 10�11 molecules cm�3 s�1 DeMore et al. [1997]
Cl + CH4 + O2 ! HCl + CH3OO 1.0 � 10�13 molecules cm�3 s�1 Atkinson et al. [2005]
Cl + C2H6 ! HCl + C2H5 5.9 � 10�11 molecules cm�3 s�1 Atkinson et al. [2005]
Cl + C2H4 + M ! C2H4Cl + M 3 � 10�10 molecules cm�3 s�1 Atkinson et al. [2005]
Cl + C2H2 + M ! C2H2Cl + M 2.0 � 10�10 molecules cm�3 s�1 Atkinson et al. [2005]
Cl + C3H8 ! HCl + C3H7 1.40 � 10�10 molecules cm�3 s�1 Atkinson et al. [2005]
Cl + C3H6 + M ! C3H6Cl + M 2.8 � 10�10 molecules cm�3 s�1 Atkinson et al. [2005]
Cl + n-C4H10 ! HCl + C4H9 2.05 � 10�10 molecules cm�3 s�1 Atkinson et al. [2005]
Cl + i-C4H10 ! HCl + C4H9 1.43 � 10�10 molecules cm�3 s�1 Atkinson [1997]
Cl + n-C5H12 ! HCl + C5H11 2.80 � 10�10 molecules cm�3 s�1 Atkinson [1997]
Cl + i-C5H12 ! HCl + C5H11 2.20 � 10�10 molecules cm�3 s�1 Atkinson [1997]
Cl + C5H8 ! products 5.1 � 10�10 molecules cm�3 s�1 Finlayson-Pitts et al. [1999]
Cl + a-C10H16 ! products 4.6 � 10�10 molecules cm�3 s�1 Finlayson-Pitts et al. [1999]
Cl + b-C10H16 ! products 5.3 � 10�10 molecules cm�3 s�1 Finlayson-Pitts et al. [1999]
Cl + C10H16 ! products 6.2 � 10�10 molecules cm�3 s�1b Finlayson-Pitts et al. [1999]
aFor a given actinic flux, the photolysis rate of ClNO3 is about an order of magnitude lower than that of HOCl; to minimize congestion of Figure 3h,

J(ClNO3) values are not depicted.
bEstimated on the basis of the average of rate constants for other nonpinene C10H16 biogenic hydrocarbons including limonene, myrcene, and 3-carene

(6.4, 6.6, and 5.6 � 10�10 molecules cm�3 s�1, respectively).
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than those measured at Hawaii during late summer (27 to
263 pptv [Pszenny et al., 2004]).
[24] To characterize relative diel variability over the

course of the experiment, HCl mixing ratios measured
during each individual day (based on the midpoint of the
sampling interval) were scaled from 0 to 1 by subtracting
the minimum for the day and then dividing by the range for
that day. The ranked values for all days were then binned
into twelve 2-hour increments (e.g., 2300 to 0100; 0100 to
0300, etc.) and plotted (Figure 5). On the basis of median
values, HCl increased rapidly following sunrise, peaked
around local noon, decreased during the afternoon,
exhibited a minor secondary peak following sunset, and

decreased to minimum values near dawn. The diel variabil-
ity of HNO3 exhibited a similar pattern [Fischer et al.,
2006]. Photochemical production during the day (discussed
in more detail below) contributed to the midday peak.
However, the depth of the mixed layer over the upwind
continent also varied over diel cycles in response to surface
heating [Arya, 2001] and thereby contributed to variability
in the composition of near-surface air sampled at Apple-
dore. At night, HCl in the relatively shallow, coastal mixed
layer was depleted via dry deposition to the surface and
scavenging by fresh (unsaturated) sea-salt aerosol. As the
depth of the mixed layer increased over land in response to
heating following sunrise, air from aloft that was not

Figure 3. Time series of (a) particulate Na+ and nss SO4
2�; (b) HNO3 and particulate NO3

�; (c) volatile
inorganic and particulate Br; (d) EFs for particulate Cl� and Br; (e) HCl and particulate Cl� deficit;
(f) Cl*; (g) calculated OH; (h) JCl2, JHOCl, and JClNO2; (i) calculated production rate of atomic Cl from
HCl + OH and from HCl + OH plus Cl* photolysis based on the assumption that Cl* is in the form of Cl2
or HOCl; and (j) corresponding calculated steady state concentration of atomic Cl based on the three
production scenarios depicted in Figure 3i. Values less than the DL are plotted as 0.5 times the DL. To
facilitate direct comparison with the vapor phase, particulate species in Figure 3b (NO3

�), Figure 3c (Br),
and Figure 3e (Cl� deficit) are plotted in units of pptv equivalents.
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Figure 3. (continued)
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depleted by nocturnal deposition and scavenging of either
HCl or HNO3 [Fischer et al., 2006] (which reacts with sea
salt to produce HCl, see below) was entrained into the
mixed layer thereby contributing to rising concentrations in
near-surface air during morning.
[25] Although most Cl* mixing ratios during this exper-

iment were below the DL, the maximum value reached
421 pptv Cl. (Table 2 and Figure 3f). The lack of an obvious
diel cycle during periods when Cl* was detectable is
consistent with modeled diel variabilities in major compo-
nents of Cl* (HOCl, Cl2, ClO, BrCl, and Cl) at Hawaii
[Pszenny et al., 2004]. Under those cleaner conditions, Cl2
and BrCl peak at night whereas the other species peak
during the day but at different times and, consequently, Cl*
exhibits relatively little diel variability. The range in Cl* at
Appledore was similar to that reported by Pszenny et al.
[1993] (<26 to 254 pptv Cl) for coastal southern Florida
during January. In contrast, the range in Cl* under cleaner
conditions at Hawaii during late summer was substantially
lower (<3 to 38 pptv Cl [Pszenny et al., 2004]). Assuming
that Cl2 was a significant component of Cl* at night
[Pszenny et al., 2004], the range in measured Cl* during
this campaign is consistent with the range of Cl2 measured
at night on the Long Island, New York, coast (<10 to
150 pptv [Spicer et al., 1998]) but somewhat greater than
that for more recent measurements in coastal urban air in
southern California (<5 to 40 pptv [Finley and Saltzman,
2006]). Note that in the above summary, Cl2 is reported as
pptv Cl2 whereas Cl* is reported as pptv Cl.
[26] Between 1848 on 10 July and 0532 on 15 July, Cl*

was detected during most sampling intervals and 7 of the 9
mixing ratios greater than 100 pptv Cl that were measured
during the campaign occurred during this period (Figure 3f).
The period also coincided with relatively strong surface
winds with a marine fetch as reflected in high sea-salt
concentrations (Figure 3a), relatively low levels of pollutant
species (e.g., HNO3 and nss SO4

2�, Figures 3a and 3b), and
relatively low actinic flux (e.g., as indicated by calculated
OH and J values, Figures 3g and 3h, respectively). Sam-
pling was suspended for most of 14 July because of
precipitation. From early on 13 July through early on 15 July
when the highest persistent mixing ratios were measured,
trajectories and retroplumes indicate large-scale atmospheric
transport from the marine sectors (marine and southwest
coastal, Figure 2) with residence times in the MBL greater
than 1 day. Throughout the period, temperatures were cool,
the sky was overcast, and mist was frequent. We hypothesize

that the relatively low photolytic sink for volatile inorganic
Cl (Figure 3h) contributed to the accumulation of Cl* to
higher concentrations during this relative to other periods. In
addition, the relatively high concentrations of sea-salt aero-
sol (including precursor Cl�) during the period (Figure 3a)
may have also sustained higher production rates of Cl*. We
return to this point below.
[27] The high Cl* and low HCl (and corresponding Clt

and HCl*) mixing ratios during this relative to other
sampling periods (Figures 3e and 3f) correspond to con-
ditions under which the overall reliability of these data can
be independently evaluated. Because total volatile inorganic
Cl (Clt) is approximately equal to sum of HCl* and Cl*,
differences between Clt and HCl* (DCl) are approximately
equal to the corresponding Cl* mixing ratios [Maben et al.,
1995]. Consequently, a regression of these values should
have a slope of approximately 1.0 and an intercept of
approximately 0.0. A reduced major axis regression of
DCl versus Cl* for all corresponding sampling intervals
during which Clt, HCl*, and Cl* were detectable (N = 20
excluding one outlier) yielded a significant linear relation-
ship with a slope of 0.79, a Y intercept of 19 pptv, and a
correlation coefficient of 0.63; the slope and intercept were
statistically indistinguishable from 1 and 0, respectively.
Because DCl typically corresponded to small differences
between substantially larger and uncertain values (see
section 2), accumulated measurement uncertainties contrib-
ute to overall uncertainty in this comparison. However, the
reasonable agreement between the paired values provides
independent corroboration that significant Cl* was present
under these conditions.
[28] Concentrations of both volatile-inorganic and partic-

ulate Br (Figure 3c and Table 2) were near the lower limits
of reported values over the open ocean [Sander et al., 2003].
In addition, BrO was undetectable (less than about 2 pptv)
by long-path and MAX DOAS throughout the campaign.
Given the high pollutant loadings in coastal New England
air during summer, these results are consistent with the
hypothesis that inorganic bromine in the MBL originates
primarily from sea salt and not anthropogenic sources. Size
distributions of particulate Br relative to Na+ reflect char-
acteristic EFs for polluted marine air (Figure 4). On the
basis of median values, the larger super-mm GMD size
fractions exhibit modest depletions (EFs < 1), the smaller
super-mm GMD size fractions are substantially depleted
(EFs � 1), and the sub-mm GMD size fractions are
substantially enriched (EFs 
 1). When summed over all

Table 2. Summary Statistics

Statistic
Particulate Na+,

nmol m�3
Particulate Cl�,

nmol m�3
Particulate Br,
nmol m�3

HCl,
pptv

Cl*,
pptv

Volatile Br,
pptv

Maximum 130 82.8 0.216 5728 421 2.80
75th percentile 48.1 20.9 0.142 774 25 1.93
Median 29.6 14.1 0.111 351 <20 1.53
25th percentile 16.7 7.9 0.079 193 <20 1.17
Minimum 3.6 1.2 0.038 5 <20 <0.06
Averagea 40.2 19.4 0.115 599 10 1.50
Number 60 60 59 302 272 61

aValues below DLs are included in averages.
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size fractions, most samples exhibited EFs > 1 (Figure 3d);
the median EF for all samples was 1.9. EFs less than 1 were
limited to the periods with relatively high sea-salt
concentrations (Figure 3d). The processes responsible for
accumulation of Br in sub-mm size aerosol size fractions in
the presence of O3 are not understood (see Sander et al.
[2003] for detailed discussion). Model simulations of the
halogen activation mechanism suggest that efficient recy-
cling through acidic S aerosols should enhance production
of Br2 and BrCl relative to that expected based exclusively
on reactions involving sea-salt solutions; sub-mm Br does
not accumulate in the model [Vogt et al., 1996]. The
observed enrichments suggest several possibilities: (1) Sub-mm
Br may exist in a form other than Br�, (2) sub-mm Br may be
associated with chemically distinct particles that lack suffi-
cient water or acidity to sustain Br activation, (3) relatively
thicker organic coatings on smaller size fractionsmay limit Br
volatilization, or (4) as yet unidentified chemical pathways
lead to Br accumulation in sub-mm size fractions.

3.2. Sea-Salt and Non-Sea-Salt Sources for Cl and
Br Species

[29] Although production of sea-salt aerosol as a function
of wind velocity is the dominant source for inorganic Cl and
Br in the open ocean MBL, the transport of crustal dust and
anthropogenic emissions (fossil fuel and biomass combus-
tion, incineration, industrial processes, and chlorinated
water supplies) from continents and biogenic emissions of
photolytic Br-atom precursors may contribute to ambient
concentrations in coastal marine air [Keene et al., 1999,
2006; Sander et al., 2003; Tanaka et al., 2003]. During this
study, the sea-salt tracers Na+ and Mg2+ in most samples
were present at ratios (median molar ratio = 8.42) near those
of surface seawater (molar ratio = 8.82 [Wilson, 1975]).
Ratios of Na+ and Mg2+ in crustal dust (e.g., 3.14 in high-
dust events at Barbados [Arimoto et al., 1995]) diverge
substantially from those in sea salt and noncrustal anthro-
pogenic sources for these particulate species are generally
small to negligible [Keene et al., 1986]. The good agree-
ment between the measured and sea-salt ratios of Na+ to
Mg2+ implies that over the coastal Gulf of Maine during
summer both species and the associated sea-salt constituents
originated primarily from the surface ocean. Variability
in concentrations of sea-salt Cl� and sea-salt Br� as a
function of source region (Figure 6) are driven in part by
corresponding variability in wind velocities (media of 4.4,
4.3, 4.5, 8.8, and 5.4 m s�1 for the north, northwest,
midwest, southwest, and south transport sectors, respectively)
and fetch over water. Effects of more localized land-sea
breeze circulation patterns and scavenging via precipitation
also contribute to variability in sea-salt Cl� and sea-salt Br�

among transport sectors. Because aerosol sampling was
suspended during the frequent periods of precipitation asso-
ciated with easterly flow, no paired data are available for the
marine sector.
[30] Measured concentrations of particulate Cl� were

depleted relative to sea-salt Cl� (EFs < 1) during most
individual sampling intervals (Figure 3d) and, on the basis
of median values, measured Cl� was also depleted relative
to sea salt for all transport regimes (Figure 6a). The greatest
absolute and relative depletions were associated with trans-
port from the more heavily populated and industrialized

Figure 4. Size distributions of particulate (a) Na+, (b) Cl�,
and (c) Br and d) corresponding size distributions of median
EFs for Cl� and Br. Here and elsewhere, boxes depict 25th,
50th, and 75th percentiles; whiskers depict 10th and 90th
percentiles. Extreme values are plotted individually.
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regions (southwest and midwest sectors). These source
regions were also associated with the highest concentrations
of HNO3 [Fischer et al., 2006] and nss SO4

2� [Smith et al.,
2007] observed during the campaign as well as the highest
median HCl concentrations. As discussed in more detail
below, these relationships are consistent with expectations
based on the pH dependence of HCl phase partitioning
[Keene et al., 1998; Erickson et al., 1999]. During most
sampling periods (Figure 3e), HCl mixing ratios were
greater than the corresponding particulate Cl� deficits
relative to sea salt (Figure 3e), which implies that HCl
had longer atmospheric lifetimes against deposition relative
to the parent sea-salt aerosol and/or that significant HCl
originated from non-sea-salt sources. We return to this point
below.
[31] In contrast to particulate Cl�, measured concentra-

tions of particulate Br were typically enriched relative to
sea-salt Br (Figure 3d). On the basis of median values for
the different transport sectors, only the southwest, which
was associated with the highest sea-salt concentrations, was
slightly depleted (Figure 6b). In addition, unlike the situa-
tion for Cl�, the absolute and relative magnitudes of Br
enrichments did not vary systematically as a function of the
more polluted (southwest and midwest) versus less polluted
(north, northwest, and S coastal) transport regimes. These
relationships suggest that the processes controlling Br phase
partitioning were relatively insensitive to variability in
levels of pollutants during this experiment. Finally, for all
transport sectors, the median concentrations of particulate
Br consistently exceeded those of volatile Br and the
median concentrations of particulate plus volatile Br were
substantially greater than corresponding sea-salt Br�

(Figure 6b). These differences suggest possible contribu-
tions of nss Br from anthropogenic or marine biogenic
sources. Alternatively, the volatilization of Br from the
short-lived super-mm size fractions and its subsequent accu-
mulation in the long-lived sub-mm size fractions (Figure 4)

Figure 5. Normalized diel variability in HCl. The shaded area depicts night.

Figure 6. Median concentrations of (a) sea-salt Cl�,
measured particulate Cl�, and HCl and (b) sea-salt Br,
measured particulate Br, and volatile inorganic Br for each
source region. Numbers of paired particulate and vapor
phase data for the north, northwest, midwest, southwest,
south coastal, and mixed sectors were 10, 15, 5, 9, 5, and
16, respectively.
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may have contributed to the divergence between sea-salt and
total measured (particulate + volatile) Br concentrations.
[32] Under steady state conditions in the absence of

precipitation, the emission flux of a conservative sea-salt
tracer such as Na+ is balanced by (and, consequently, can be
estimated from) its corresponding dry-deposition flux. Sim-
ilarly, at steady state, the emission fluxes of Cl� and Br� in
association with sea-salt aerosol can be estimated on the
basis of their respective ratios with a conservative sea-salt
tracer such as Na+ in seawater and the corresponding dry-
deposition flux of that tracer to the ocean surface. For
example, at steady state, the emission flux of sea-salt Cl�

from the surface ocean is equal to the corresponding
deposition flux of particulate Na+ multiplied by the Cl�/
Na+ ratio in seawater. We recognize that the assumption of
steady state in a dynamic coastal regime is problematic.
However, on the basis of representative sample statistics for
central tendencies (e.g., median values), comparisons
between the inferred emission fluxes of sea-salt Cl� and
Br� and the corresponding dry-deposition fluxes of mea-
sured volatile and particulate Cl and Br species provide a
semiquantitative approach with which to evaluate the rela-
tive importance of sea-salt versus nss sources for Cl and Br
during this campaign.

[33] The median emission fluxes of sea-salt Cl� and sea-
salt Br� inferred from the dry-deposition fluxes of size-
resolved Na+ associated with each source region are
compared with the corresponding deposition fluxes of total
Cl (HCl + size-resolved particulate Cl�) and total Br
(volatile + size-resolved particulate Br), respectively, in
Figure 7. Concentrations of Cl* were generally small to
negligible relative to HCl and particulate Cl� (Table 2 and
Figures 3e and 3f) and median values for all sectors were
below the DL. Consequently, Cl* was not considered in this
analysis. The generally good agreement between the
inferred median emission fluxes and the corresponding
modeled dry-deposition fluxes for all transport regimes
supports the hypothesis that sea-salt aerosol was the primary
source of inorganic Cl and volatile inorganic and particulate
Br in coastal New England during summer. These results
suggest that divergence among sea-salt, particulate, and
volatile concentrations was driven primarily by atmospheric
processing rather than contributions from anthropogenic,
marine biogenic, and crustal sources.

3.3. Sea-Salt Dehalogenation and Aerosol pH

[34] In addition to the similarities in their diel cycles
(mentioned above), longer-term temporal variabilities of
HCl and HNO3 over the course of the experiment were

Figure 7. Median emission fluxes of (a) sea-salt Cl� and (b) sea-salt Br inferred from modeled dry-
deposition fluxes of particulate Na+ compared with median modeled deposition fluxes of (c) HCl and
particulate Cl� and (d) volatile inorganic and particulate Br for each source region.
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also correlated. For example, the three most polluted epi-
sodes on 20 July, 30 July, and 3 August episodes (as
indicated by HNO3 concentrations greater than 4000 pptv)
coincided with three of the 4 days during which HCl mixing
ratios exceeded 3000 pptv (Figure 3). The covariability
of these compounds is explained in part by coupled,
pH-dependent, chemical interactions with sea-salt aerosol
[e.g., Keene and Savoie, 1998]. On the basis of its thermo-
dynamic properties, HNO3 partitions preferentially with
relatively less acidic (compared to sub-mm S aerosols)
sea-salt size fractions according the following relationship:

HNO3g ¼ NO�
3

� �
*H

þ� �
= KH-HNO3*Ka-HNO3ð Þ ð10Þ

where activities are in M, KH-HNO3 is the Henry’s Law
constant for HNO3 in M atm�1, and Ka-HNO3 is the acid
dissociation constant for HNO3 in M. The resulting
acidification of sea-salt aerosol solutions leads to volatiliza-
tion of HCl, which also partitions with aerosols as a
function of pH based on an analogous relationship. These
two relationships can be combined and reorganized to yield

HClg=HNO3g ¼ Cl�f g= NO�
3

� �� �
*½ KH-HNO3*Ka-HNO3ð Þ

= KH-HCl*Ka-HClð Þ
 ð11Þ

Because the phase partitioning of both species regulates
aerosol pH, at equilibrium, the ratio of HCl to HNO3 in the
gas phase is directly proportional to the ratio of Cl� and
NO3

� activities in aerosol solutions. In addition, aqueous
activities for both species covary (and thus mixing ratios of
HCl and HNO3 also covary) as functions of aerosol LWC.
[35] Ranges in aerosol pHs inferred from the measured

phase partitioning and associated thermodynamic properties
of HCl [Smith et al., 2007] were similar to those estimated
during a previous experiment in the same region [Keene et
al., 2004]. Briefly, all sampled aerosol size fractions were
acidic. Median pH values for the four largest sea-salt size
fractions (average GMDs of 25, 13, 6.2, and 2.9 mm) ranged
from 3.1 to 3.4 and those for the smallest two size fractions
(average GMDs of 0.77 and 0.39 mm) were 1.1 and 1.6,
respectively. Total acidity (Ht = H+ + undissociated acids)
was greater than H+ by 1 to 2 orders of magnitude in all size
fractions. Most Ht was in the from of HSO4

� and, conse-
quently, the HSO4

� $ H+ + SO4
2� equilibrium substantially

buffered aerosol pH. The diel variability in HCl (Figure 5)
and HNO3 [Fischer et al., 2006] implies corresponding
variability in aerosol pH [Keene et al., 2004].
[36] In contrast to HCl, HBr is highly soluble in acidic

solutions (Ka = 1.0 � 109 M; KH = 7.2 � 10�1 M atm�1

(Chameides and Stelson [1992] andLax [1969], respectively))
and, consequently, virtually none volatilizes directly from
tropospheric aerosols. Model calculations suggest that the
production of Br2 and BrCl in acidified sea-salt solutions
(reactions 1 and 2) and their subsequent volatilization are
the primary pathways that debrominate marine aerosol
[Sander et al., 2003]. Despite the small Br EFs associated
with super-mm size fractions, the generally low sea-salt
concentrations during this campaign relative to open-ocean
conditions and the apparent lack of significant anthropo-
genic or crustal sources of inorganic Br resulted in relatively
low concentrations of volatile inorganic Br. The substantial

accumulation of Br in association with sub-mm (primarily
pollutant) aerosol size fractions may have also slowed
multiphase recycling relative to the open-ocean MBL in
which the corresponding Br EFs are substantially lower
[Sander et al., 2003]. At these low concentrations, Br-
radical chemistry is not expected to significantly influence
the chemical evolution of continental outflow in coastal
regions.

3.4. Atomic-Cl Production and Steady State
Concentration

[37] Model calculations using the approach of von
Glasow and Crutzen [2004] parameterized for representa-
tive conditions during this campaign (S. Pechtl and R. von
Glasow, submitted manuscript, 2007) indicate that, at mid-
day, Cl* was composed primarily of HOCl (�60%) and
ClNO3 (�36%) with minor additional contributions from
ClO, BrCl, and Cl2 (<�2% each). At midnight, Cl* was
composed primarily of ClNO2 (�74%) with the balance
contributed by similar amounts of HOCl and Cl2 (>�13%
each). Midday J values for HOCl and ClNO2 were similar
but both were about an order of magnitude less that those
for Cl2 (Figure 3h) and about an order of magnitude greater
than those for ClNO3 (not shown).
[38] Production rates of atomic Cl were calculated on the

basis of three different scenarios (Figure 3i). Scenario1
corresponds to a lower limit for which reaction 5 (HCl +
OH) was the only source for atomic Cl. Scenario 2 corre-
sponds to an upper limit that includes the combined
production from reaction 5 plus the photolysis of Cl* based
on the assumption that Cl* was composed exclusively of
Cl2. Scenario 3 corresponds to a midrange estimate that is
identical to scenario 2 except that Cl* was assumed to be
composed exclusively of HOCl. It is important to recognize
that contributions from Cl* mixing ratios less than the DL
were not considered in the analysis but, given the relatively
high DL limit (20 pptv Cl), were undoubtedly significant
during some periods. Approximate steady state Cl-atom
concentrations for each of these scenarios were calculated
from equation (9) (Figure 3j).
[39] At HCl mixing ratios greater than about 1 ppbv,

reaction with OH typically sustained steady state midday
Cl-atom concentrations in the range of 104 cm�3 (Figure 3);
production from photolysis of detectable Cl* contributed to
substantially greater Cl-atom concentrations on many days
(Figure 3j). These calculations indicate that midday con-
centrations of atomic Cl in coastal New England during
summer often range from 104 to 105 cm�3 and perhaps
occasionally higher. The above estimates encompass the
average concentrations of atomic Cl (ranging from 2.2 to
5.6 x 104 cm�3) that were inferred in parallel on the basis of
variability-lifetime relationships for selected NMHCs in
surface air associated with the different transport sectors
depicted in Figure 2 [Pszenny et al., 2007]. An independent
analysis based on relative concentration changes in NMHCs
measured during a cruise of the NOAA research vessel
Ronald H. Brown in the Gulf of Maine during ICARTT
yielded similar estimates of Cl-atom concentrations (upper
limit of about 4 x 104 cm�3 [Goldan et al., 2005]).
Although the average concentrations inferred from these
latter two investigations generally fall within the rather
broad range estimated herein (Figure 3j); direct quantitative
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evaluation of paired results is constrained by the large
uncertainties associated with each approach. For the
approach employed in this analysis, the lack of speciation
in Cl* and the relatively high DL for Cl* are particularly
important in this regard. Despite the inherent limitations, all
estimates point to significant concentrations of atomic Cl in
polluted continental outflow over the coastal ocean during
summer.
[40] Interpretation of paired results for relatively cleaner

flow conditions provides useful context for deconvoluting
the relative importance of different production pathways.
Both Goldan et al. [2005] and Pszenny et al. [2007] inferred
significant Cl-atom concentrations (ranging from 2 to 4 �
104 cm�3) during relatively clean flow conditions associated
with multiday transport over the coastal ocean. Although
HCl was not measured on the NOAA Ronald H. Brown in
parallel with the hydrocarbons analyzed by Goldan et al.
[2005], data from Appledore suggest that the HCl + OH
pathway would have been a relatively unimportant source of
atomic Cl under these conditions. Appledore experienced
persistent relatively clean flow from the ‘‘marine’’ and
‘‘south coastal’’ sectors during two daytime periods (8 and
13 July) for which chemical data are available [e.g., Fischer
et al., 2006; Smith et al., 2007]. Although HCl mixing ratios
during the late afternoons of most days over the course of
the campaign exceeded 1000 pptv (Figure 3e), maximum
values for 8 and 13 July were relatively low (360 and
367 pptv, respectively, Figure 3e). These low maxima
reflect the efficient loss of anthropogenic acids, particularly
HNO3, and their precursors from aged air parcels over the
ocean due to the dry deposition of gases, scavenging and
dry deposition via sea salt (e.g., Figure 3b), and wet
deposition [Russell et al., 2003; Fischer et al., 2006] and
the associated pH-dependent shifts in HCl phase partition-
ing (see section 3.3). Consequently, under these cleaner
conditions, the HCl + OH pathway sustained steady state
Cl-atom concentrations during daytime that were also
relatively low (<103 cm�3 on 13 July; data for actinic flux
were not available for 8 July). In contrast, the corresponding
mixing ratios of Cl* were consistently detectable during the
afternoons of both days; most exceeded 50 pptv (Figure 3f).
Under these conditions, photolysis of Cl* was the major
source of atomic Cl, which (on the basis of midrange
estimates) sustained steady state concentrations of atomic
Cl during the daytime on 13 July of 1.0 to 1.5 � 104 cm�3

(Figure 3j). These ‘‘midrange’’ concentrations are reason-
ably consistent with corresponding estimates based on
relative changes in NMHCs and support the hypothesis that
direct photolysis of precursors was the dominant production
pathway for atomic Cl in aged continental outflow over the
coastal ocean. Preliminary model calculations (S. Pechtl and
R. von Glasow, submitted manuscript, 2007) indicate
that HOCl produced via gas phase recycling (reactions 6
through 8) and Cl2 produced from reaction of HOCl with
Cl� in acidic aerosol solutions (reaction 3) were the
primary Cl-atom precursors in polluted continental outflow
over the coastal ocean.
[41] Taken together, results from this and related studies

during ICARTT CHAiOS indicate that Cl radicals contrib-
uted significantly to the oxidation potential of coastal New
England air during summer and thereby modified the
chemical processing of continental outflow through the

MBL relative to that predicted based exclusively on con-
ventional HOx/NOx chemistry. For example, summed reac-
tion rates for methane and more than 30 abundant NMHCs
with OH and Cl for air associated with each of the transport
sectors suggest that Cl-atom reactions increased the kinetic
reactivity of hydrocarbons by 16% to 30% over that due to
OH alone [Pszenny et al., 2007]. On the basis of published
model calculations [e.g., Tanaka et al., 2003; Finley and
Saltzman, 2006], we infer that the enhanced supply of
odd-H initiated via Cl-hydrocarbon reactions also contrib-
uted to net O3 production. In addition, halogen chemistry
would have influenced O3 production by accelerating the
conversion of NOx to particulate NO3

� [e.g., Sander et al.,
1999] and by altering OH/HO2 ratios [Bloss et al., 2005].
A companion modeling study (Pechtl and von Glasow,
submitted manuscript, 2007) fully evaluates the nature of
transformations involving Cl radicals in polluted coastal
air and their associated influences on the chemical evolu-
tion of continental outflow. Results of that effort are
currently in review and will be published separately.

4. Summary and Conclusions

[42] 1. The average concentrations of conservative sea-
salt constituents in near-surface air over the coastal Gulf of
Maine during summer (e.g., Na+ = 40 nmol m�3) were
factors of 4 to 8 times lower than average values over the
open North Atlantic Ocean.
[43] 2. Concentrations of volatile inorganic and particu-

late Br were at the lower limit of reported values in the
MBL. In addition, the inferred production fluxes of sea-salt
Cl� and sea-salt Br� as functions of transport regime were
approximately balanced by the corresponding dry–deposition
fluxes of volatile and particulate Cl and Br. These results
support the hypothesis that sea-salt aerosol was the primary
source for both inorganic Cl and inorganic Br in polluted air
along the New England coast.
[44] 3. Acid displacement of sea-salt Cl� primarily by

HNO3 sustained high HCl mixing ratios (often >2000 pptv)
during daytime; based on summed values over all aerosol
size fractions, the median Cl� EF was 0.66. Transport from
the more polluted southwest and midwest sectors was
associated with relatively lower Cl� EFs and relatively
higher HCl mixing ratios.
[45] 4. Median pH values for the four largest sea-salt size

fractions (average GMDs of 25, 13, 6.2, and 2.9 mm) ranged
from 3.1 to 3.4 and those for the smallest two size fractions
(average GMDs of 0.77 and 0.39 mm) were 1.1 and 1.6,
respectively.
[46] 5. Cl* ranged from <20 to 421 pptv but was less than

the DL during most sampling intervals. Periods with con-
sistently detectable mixing ratios corresponded to relatively
clean conditions, multiday transport over water, and rela-
tively low actinic flux.
[47] 6. At high HCl mixing ratios (>1000 pptv), HCl +

OH sustained steady state Cl-atom concentrations in the
range of 104 cm�3.
[48] 7. Photolysis of detectable Cl* was the dominant

source of atomic Cl during many periods; calculated steady
state concentrations of Cl atoms were frequently in the
range of 104 to 105 cm�3.
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[49] 8. At these concentrations, Cl played an important
role in the chemical evolution of the polluted coastal air.
[50] 9. The low production flux of sea-salt aerosol and

associated Br� sustained low concentrations of volatile
inorganic and particulate Br compared to the open ocean
MBL.
[51] 10. Sub-mm aerosol size fractions were highly

enriched in Br; the mechanism(s) responsible for these
enrichments are not known.
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